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Intxwcluetion

Optimization is arJ integral aspect of mission pl~~ling. In recent ycaIs, the rlriw  for faster,

more propellant-cfllcicrl( missions lIas L ~ to a n  incrtmcd  itmmcst jr] low-thnlst
(!9

propulsic)rt.  Althoufih Ihe.sc propulsion systems result in hi:her  perforrnanct,  (1)c difficulty

in ctctcmnining  the optimal (rajcctorics  :Lw.ociawcl  wiltl ttlcnt  is increased. By nature, low-

thst systcrm  :me requird to opera[c  for 3 rnuc}l lcm~ct  ir]tcrval rhlrin~ orbit transfer than

[heir irnpulsivc,  chcmirzd propulsion courlte~x~rts. This results in a noQblc  increase in

problem complexity. Sinew the. tllmst level find direction must be cictcrminrd  for a

significantly longer duration, [he ccmtilluous  na[u[c  of t h e  c o n t r o l  p a r a m e t e r s  makes IIW . ~

design of optimization software a particularity challc]tgitlg  task. >,){/ fi+’+

Clrrrent working mc(hods for dctmmininp,  low-thmst trvjec.tories  arc calculws&ased

and require large expenditures of limo  to produce  a single feasible  solution. such a

problem formulation results in a massively wultinmdal search space. highly scrusitivc  to

user input. Ucpendi n: upon the Conlp]exity of [t Ie [T ajcctory, the optimization process my

take an ywhcrc from a single day to several weeks. An on-going research venture being

conducted by the Jet Propulsion 1,aboratory (J I’L) and the 1 University of Illinois at l-Jrbana-

(I]ampaign’s Conkputaticmal  Astrodynarnics Rcscarcll Facility  ([ JIIJC’  C; ARI.) i s

invmtigatinS  alternative mdlodc)logics i n illl Ntcmpt  to alkviatc  thCSC p r o b l e m s .

Au(on]ation  of tlIc optil~)iz.atic~r]  p r o c e s s  usinfl  s(oc}mstic search techniques such as

simulated anncaling and gcme(ic  algor-it)lln$  to drive h cxis[in~,  optimization software is a

major to~ic of research
This study details rec.eri( work on irl]pkvormtint,  a Pareto Cenetic  algorithm in order

to perform nmlticjbjec[ive  optin~i7ation for low [h[ust od~it  transfers. Developrrwnt  c~f such

a multiobjective opti[niza[io[] algcwithm  allows for the ~c]vxatior]  of “famili~s”  of optimal

trajectories spanning the Ili:hly lnultinmd:il  search space. ‘l”llis  is accomplished by ranking

and sorting the. popu~ation according to individllals’ Parsto optimality, and niching over

established Pareto fronts. AdrJitiomrlly,  it provides ]ncreascd  robiistncss  throuch its

inherent separation of objectives and elirniwrtc$  the objective conflict [Hil~$,  198S]  which

arises from the classical [ccilruquc  of sc:il:][  iz.in~,  mulriplc  objectives. Trajectory ~eneration

is accomplished through a hybridiz,atior[  c)f the Scnetic al~orithm  with cxistin~ JPI.

tmjcctc]ry  optimization software to produce fiuuiliar  and Nssrble results.
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I n  order to describe  Pi~r~l~  op[imimtiorr, i t  i s  fils[ ncccssa~ to ctcf”nc  muhiobjcetivc.

optimization, Multiobjec[ive  optimization - m opposed to sin fle-objective  optimiuttion  - is

[he optimization of a system with ]nore than orw objective. As in single-objcxtiw

optimiz,atiorl,  the object ivc(+s) may have imy number of crluality or incqwdit  y consh  ai nts

imposfxl  upon them. I“his  HI k represented mathematically as (Rae. 1991 ],

Minil,,ixe.Maximi7,e. 1(x) i = 1,2, d,., N

(1)

Rather than searching for the solution which yields the globally  maxitnd  (or minimal) value

for a single objective function, d~e “best” solution is found by simul(anecmsly  optimi7.ing

several objcz!ives  a[ once. Clptimi7.ation  prchlmns  such as these are particularly relevant in

the area of missicm desi~,n. Trajccmry optinlizalion  is iri fact an inherently rnultiobjcctiw

optimization problcnl. Altllcm~h  the prirlliiry  goal of the mission ricsigncr  in optimizing the
spacecraft’s trajectory is to achieve the firm] state defined by the mission requirements,

other objectives contribuk  to what cons(itlltcs  a “good” [raj.sctory. l;light tinw and frmd

mass delivered to destination art: also issues to be formulated as mukiple objectives or
corlstraints.

These  types of optimimtimi problems JIave traditicrnajl  y been dcah with by

averaging each objcctivc with e weighting factor. and (hen combinin~ the objeztivcs into a
single  scalar objective. Such reduction techniques eliminate the need for a nlorc compjex,
multiobjective algorithm, but introduce ncw parameters in tht:  form of ttw wci~htirrg

factors. The user mus[ twcmilc  farnijiar  with [hc exact relationship bctvwcn  objectives in

order to dctemnine  the proper wci@ing  values tltat wilj  yield the desircct  r e s u l t .

Dcterminaticm of the wcigtltirlg  fac[ors  can, ill practice, become arl optimi7.atior)  process in

and of itself.

Prchlematlc  issues such as those mentioned above cal~ lxe rtxdved by irtstitutin~  a

search algorithm  w’hich  p~~foi  (rls a Pare.to optirniz:itiol~. J-%rt’.to  optimization is (hc principle

of optimizing multiple  cornpctinp.  chjcct  ivcs. A succinct dcflrl~tion of Pareto optirwdity  was
provided by Ecf wirL Dean.



A Pareto optimal solution is not unicple. but is a mernbcr of a set of such

points which am consickmx! cqualiy  good in terms of the vector objective.

This sp.aec may be viewed as a space of compromise sohrtions  in which

each objective could be irnprcwcd,  but if it was, if WOUIC1 bc improved at the

expense of at Icast one other objective.. (Dean, 199S]

Another way of stating this woulcl  be [O say that a solution is Pareto optimal, or
nondomr’mz~ed, for a given set of objectives if tlmrc  is no othc~ existing solution which is

superior to that solution in (JI objectives. If a solution exists which is superior in .WWW

objectives, Itten that solution wouId cons(itutc  a point on a front of Pareto optimal
solutions. Take for exampk the problcm  of minin~i7,ing both at:uments  for a set of points,

{ (0,S).( 1,3),(2,4) }. Point 1 is dominated try both points 2 and 3 in its secoud coordinate;
however, it dominates points 2 and 3 wi[h respect to the first coordinate, therefore  it is ncm-

dominated. Point 3 is clm-ninatcd wi[h respect to both coordinates by point 2, therefore it is

a dominated indivickd and not Pareto optimal, ITOT a rnorc thorough discussion of Pareto

optima[it y, scc Generic A Igorihn.s  [GoldbcrK,  1989].

The benefits of incorpcrmtillg  3 Pareto search algorithm in traj~tory  ~ptin~iz~ti~n

process arc twofold: i.) elimination of [k problems t.mcountmcd in classical n]uhiobje~tivc

optimization nmthodolo~ies  such as object  ivc cmnfIict,  and ii. ) development of a Pareto

optimal front of solutions, providin~ tin array of compromise solutions. When applied to
the population-based gcxlctic  :Ilfywithm. these Parclc)  concepts slioulcl  enable automatic

~eneration  of Pareto optimt]  solutions. In the context of optimal spacecraft trajccLory

~cncration discussed in this stucly,  a Pareto ge.nc.[ic algc~rithm  should provide the mission

desif,rrer  the capability of gctlcrfiting “families”’ of optimal orbit transfers, illustrating the

tracks  bctwccn defined objectives.

NSGA/SI?I’’l’OP Hybridixafiorl

The algorithm used in this study is a hybric[ization  of a Pareto  gene~ic a]goridltn, and

classical calculus-of-variations-base@ q)ti~llim[icm  sof(warc. The Pareto genetic algorithm

is one based on the ccrnccpt  of non-dominated so~lil]g c)ri~inally  proposed  by Goldberg

[Goklbcrg,  1989], and later ckveloped  by Stvnivas  :incl lkb [Srhivas  and Deb, 1995] as

the Non-dom-inatcrl  Sorling Germtic A! Sorithlrt (NSGA). A population of individuals is
sc~rtml  through and subdivided into I)arcto  frorits based upon i[ldividuals’  Pareto optimality,

each front being assigned a certain  rank. ]:itncsscs for each indivkiurd solution arc then
msi~ncd  based on rank, and adjusted accorditl~ to their proxirrtit  y (resernblanee) to o(hcr



F’. G

solutions using a te,chniquc  known as nichi?l~. Niching helps to maintoirr populatimt

ciivcrsity  and serves to counter premature ccmvcrSemce  of the population. I% further

details, sce [Srinivas  and  Deb, 1995].

The  Pareto genetic algorithm essentially maintains and evolves a set of possible

soluticms, making adjustments to individuals depcndinc  upon their corresponding fitness.

Fitness values are obtained by integrating the genetic algorithm with a calcuiusfb-ased  low-
O\ -ti-. r, .d,+o$  ~

thrust trajectory optimization Imgram  known as SE1’TOP. clcveloPcd at the Jet F’ro@sion

Labormry in Pasackm,  Cal ifomia. 11 ybridizaticm  is accornp] ished through a Wddwinian

evolution strategy. The objective ve~tor  for each individual solution is dcterrnincd by

~[nnin~ SF. F~”OP  for a ~iven set of input pxrame[cr$  rlctermincrl  by the ,rynetic algorithm.

IIW procedure is Ikddwinian  in that  the fitness rctumcd to NSGA by SEmOP cotmspcwds

to the input vahrcs  of the pararnctms,  even though those parameters may have been adjusted

by SEF’l”OP’s  proccclurm. Baldwinian  hybridization stratc~ics are armthcr way of

maintaining diversi[y in a population of solutions and prevrmting  pmmaturc  crmver~encc.

R e s u l t s

Results have been obtained whicl~  duplicate the ~m-fm-mancc remonstrated by Srinivm and

Deb’s algorithm [Sri nivas and Deb 1995], as WC1l as those. which prcwide  proof-of-concept
for the NSC;WSEM”OP  hybrid fcu mulatim. Dja~nostic.s  were run on the NSGA alf,nrithm

alone, usinc  the test functions pruviclcd  by Srillivm and Dcb [ 1995] as well  as several

dcvisecl by the authors lo ch-nons[rate efficacy 011 pmblcrns  invoIving more than two

objectives and mixed minhnrw objcc[ives. Test ca-m were then run to clcmonstrate  the
effcccivcness of the hybridized methodology for l:ar~h-h~tus  flyby allrl rendezvous

t rajcctorics, a n d  ~wth-h!ercury  r rmrhnvous tr ajrx[orics  with multiple heliocentric

revolutions. All cases were succmsful  in gcmxating Pareto optimal fronts, and  thus

proviciinfi [he cksirecl r e s u l t  of gcntmrtins “families” of optima] trajectories containing

arrays of compromise solutions [Figs. 1 -3].
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